Abstract

BackgroundPlant genomes contain a large number of HAK/KUP/KT transporters, which play important roles in potassium uptake and translocation, osmotic potential regulation, salt tolerance, root morphogenesis and plant development. Potassium deficiency in the soil of a sugarcane planting area is serious. However, the HAK/KUP/KT gene family remains to be characterized in sugarcane (Saccharum).ResultsIn this study, 30 HAK/KUP/KT genes were identified in Saccharum spontaneum. Phylogenetics, duplication events, gene structures and expression patterns were analyzed. Phylogenetic analysis of the HAK/KUP/KT genes from 15 representative plants showed that this gene family is divided into four groups (clades I-IV). Both ancient whole-genome duplication (WGD) and recent gene duplication contributed to the expansion of the HAK/KUP/KT gene family. Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that purifying selection was the main force driving the evolution of HAK/KUP/KT genes. The divergence time of the HAK/KUP/KT gene family was estimated to range from 134.8 to 233.7 Mya based on Ks analysis, suggesting that it is an ancient gene family in plants. Gene structure analysis showed that the HAK/KUP/KT genes were accompanied by intron gain/loss in the process of evolution. RNA-seq data analysis demonstrated that the HAK/KUP/KT genes from clades II and III were mainly constitutively expressed in various tissues, while most genes from clades I and IV had no or very low expression in the tested tissues at different developmental stages. The expression of SsHAK1 and SsHAK21 was upregulated in response to low-K+ stress. Yeast functional complementation analysis revealed that SsHAK1 and SsHAK21 could rescue K+ uptake in a yeast mutant.ConclusionsThis study provided insights into the evolutionary history of HAK/KUP/KT genes. HAK7/9/18 were mainly expressed in the upper photosynthetic zone and mature zone of the stem. HAK7/9/18/25 were regulated by sunlight. SsHAK1 and SsHAK21 played important roles in mediating potassium acquisition under limited K+ supply. Our results provide valuable information and key candidate genes for further studies on the function of HAK/KUP/KT genes in Saccharum.

Highlights

  • Plant genomes contain a large number of HAK/KUP/High-affinity Synonymous substitution ratio (Ks)+ transporter/K+ uptake permease/K+ transporter (KT) transporters, which play important roles in potassium uptake and translocation, osmotic potential regulation, salt tolerance, root morphogenesis and plant development

  • Identification of HAK genes in sugarcane Based on comparative genomics, 29 SbHAK genes were identified from sorghum (Sorghum bicolor, sugarcane’s nearest relative)

  • The results showed that the Nonsynonymous substitution ratio (Ka)/Ks ratios were less than 0.5, except for SsHAK13, suggesting that purifying selection was the main force driving the evolution of HAK genes (Fig. 1)

Read more

Summary

Introduction

Plant genomes contain a large number of HAK/KUP/KT transporters, which play important roles in potassium uptake and translocation, osmotic potential regulation, salt tolerance, root morphogenesis and plant development. Potassium deficiency in the soil of a sugarcane planting area is serious. Symptoms of plant potassium deficiency usually manifest as weak stems, easy lodging, decreased tolerance to drought and cold and yellow leaves, due to the degradation of proteins and chlorophyll, which leads to tissue necrosis [2]. Sugarcane is an important sugar and energy crop with a long growth period, large biomass and large amount of potassium fertilizer absorption. It is estimated that sugarcane needs to absorb approximately 2~2.5 kg of potassium to produce one ton of sugar [3, 4]. Sugarcane is mainly cultivated in subtropical and tropical regions, where soil acidification and potassium leaching are common. The contents of total potassium and available potassium in the cultivated layer of these sugarcane areas are low

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call