Abstract

BackgroundGlycolytic pathway is common in all plant organs, especially in oxygen-deficient tissues. Phosphofructokinase (PFK) is a rate-limiting enzyme in the glycolytic pathway and catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate. Cassava (M. esculenta) root is a huge storage organ with low amount of oxygen. However, less is known about the functions of PFK from M. esculenta (MePFK). We conducted a systematic analysis of MePFK genes to explore the function of the MePFK gene family under hypoxic stress.ResultsWe identified 13 MePFK genes and characterised their sequence structure. The phylogenetic tree divided the 13 genes into two groups: nine were MePFKs and four were pyrophosphate-fructose-6-phosphate phosphotransferase (MePFPs). We confirmed by green fluorescent protein fusion protein expression that MePFK03 and MePFPA1 were localised in the chloroplast and cytoplasm, respectively. The expression profiles of the 13 MePFKs detected by quantitative reverse transcription polymerase chain reaction revealed that MePFK02, MePFK03, MePFPA1, MePFPB1 displayed higher expression in leaves, root and flower. The expression of MePFK03, MePFPA1 and MePFPB1 in tuber root increased gradually with plant growth. We confirmed that hypoxia occurred in the cassava root, and the concentration of oxygen was sharply decreasing from the outside to the inside root. The expression of MePFK03, MePFPA1 and MePFPB1 decreased with the decrease in the oxygen concentration in cassava root. Waterlogging stress treatment showed that the transcript level of PPi-dependent MePFP and MeSuSy were up-regulated remarkably and PPi-dependent glycolysis bypass was promoted.ConclusionA systematic survey of phylogenetic relation, molecular characterisation, chromosomal and subcellular localisation and cis-element prediction of MePFKs were performed in cassava. The expression profiles of MePFKs in different development stages, organs and under waterlogging stress showed that MePFPA1 plays an important role during the growth and development of cassava. Combined with the transcriptional level of MeSuSy, we found that pyrophosphate (PPi)-dependent glycolysis bypass was promoted when cassava was under waterlogging stress. The results would provide insights for further studying the function of MePFKs under hypoxic stress.

Highlights

  • Glycolytic pathway is common in all plant organs, especially in oxygen-deficient tissues

  • The size of Arabidopsis seed shows a notable reduction when the external oxygen concentration drops below 15%, and seed production is remarkably inhibited when the oxygen concentration drops to 2% [7]

  • A neighbour-joining (NJ) phylogenetic tree was drawn based on the multiple alignments of the MePFK amino acid sequences and other PFK sequences from Arabidopsis, rice, castorbeen, tomato and potato to investigate the evolutionary relationships between MePFK protein and other PFKs from other species (Fig. 1)

Read more

Summary

Introduction

Glycolytic pathway is common in all plant organs, especially in oxygen-deficient tissues. Phosphofructokinase (PFK) is a rate-limiting enzyme in the glycolytic pathway and catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate. Oxygen falls to very low level in metabolically active or large sink tissues. Low internal oxygen levels have been found in many plants, such as growing tuber [1], developing seeds [2], fruits [3], root [4] and phloem tissue [5]. In classical plant glycolytic pathway, phosphofructokinase (PFK) is the main rate-limiting enzyme and regulatory point. PFP is common in all plant tissues, and its enzyme activity is usually equal to or greater than that of PFK [16]. PFP is composed of two polypeptides with molecular weight between 58,000 and 55,700

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call