Abstract

BackgroundPythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA). EPA is an important and expensive dietary supplement with a promising and very competitive market, which is dependent on fish-oil extraction. This has prompted several research groups to study biotechnological routes to obtain specific fatty acids rather than a mixture of various lipids. Moreover, microorganisms can use low cost carbon sources for lipid production, thus reducing production costs. Previous studies have highlighted the production of EPA by P. irregulare, exploiting diverse low cost carbon sources that are produced in large amounts, such as vinasse, glycerol, and food wastewater. However, there is still a lack of knowledge about its biosynthetic pathways, because no functional annotation of any Pythium sp. exists yet. The goal of this work was to identify key genes and pathways related to EPA biosynthesis, in P. irregulare CBS 494.86, by sequencing and performing an unprecedented annotation of its genome, considering the possibility of using wastewater as a carbon source.ResultsGenome sequencing provided 17,727 candidate genes, with 3809 of them associated with enzyme code and 945 with membrane transporter proteins. The functional annotation was compared with curated information of oleaginous organisms, understanding amino acids and fatty acids production, and consumption of carbon and nitrogen sources, present in the wastewater. The main features include the presence of genes related to the consumption of several sugars and candidate genes of unsaturated fatty acids production.ConclusionsThe whole metabolic genome presented, which is an unprecedented reconstruction of P. irregulare CBS 494.86, shows its potential to produce value-added products, in special EPA, for food and pharmaceutical industries, moreover it infers metabolic capabilities of the microorganism by incorporating information obtained from literature and genomic data, supplying information of great importance to future work.

Highlights

  • Pythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA)

  • Whole-genome sequencing The species classification of the isolate selected for genome sequencing was confirmed by Sanger sequencing and analysis of the cytochrome oxidase I gene (COI) and internal transcribed spacer regions (ITS1 and ITS2), which were aligned, using the nucleotide Basic Local Alignment Search Tool (BLAST) [20], with the National Center for Biotechnology Information (NCBI) genomic database

  • EPA production with P. irregulare, by enzyme Δ-17 fatty acids’ desaturase suggested by the metabolic annotation, provides a great commercial advantage, as this desaturase can use fatty acids both from the acyl-CoA fraction and the phospholipids fraction as substrates [67]. This metabolic annotation can infer about P. irregulare metabolic capabilities, supplying information of great importance to future work. This unprecedented functional annotation demonstrates the presence of relevant genes and is consistent with results described in literature

Read more

Summary

Introduction

Pythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA). EPA is an important and expensive dietary supplement with a promising and very competitive market, which is dependent on fish-oil extraction This has prompted several research groups to study biotechnological routes to obtain specific fatty acids rather than a mixture of various lipids. Microorganisms are very attractive sources of EPA, because they can be driven to produce specific fatty acids rather than a mixture of various lipids, using low cost carbon sources without presence of heavy metals in the cultivated medium. This can reduce the cost of lipid extraction and purification and help to reduce the dependence on fish-oil. Some microorganisms have been studied with this goal, such as Mortierella alpine, Mortierella elongate, Monochrysis luteri, Pseudopedinella sp., Coccolithus huxleyi, Cricosphaera carterae, Monodus sub-terraneous, Nannochlorus sp., Porphyrium cruentum, Cryptomonas muculata, Cryptomonas sp., Rhodomonas leans, and Pythium irregulare [9,10,11,12]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.