Abstract
BackgroundCotton is one of the most important commercial crops as the source of natural fiber, oil and fodder. To protect it from harmful pest populations number of newer transgenic lines have been developed. For quick expression checks in successful agriculture qPCR (quantitative polymerase chain reaction) have become extremely popular. The selection of appropriate reference genes plays a critical role in the outcome of such experiments as the method quantifies expression of the target gene in comparison with the reference. Traditionally most commonly used reference genes are the “house-keeping genes”, involved in basic cellular processes. However, expression levels of such genes often vary in response to experimental conditions, forcing the researchers to validate the reference genes for every experimental platform. This study presents a data science driven unbiased genome-wide search for the selection of reference genes by assessing variation of > 50,000 genes in a publicly available RNA-seq dataset of cotton species Gossypium hirsutum.ResultFive genes (TMN5, TBL6, UTR5B, AT1g65240 and CYP76B6) identified by data-science driven analysis, along with two commonly used reference genes found in literature (PP2A1 and UBQ14) were taken through qPCR in a set of 33 experimental samples consisting of different tissues (leaves, square, stem and root), different stages of leaf (young and mature) and square development (small, medium and large) in both transgenic and non-transgenic plants. Expression stability of the genes was evaluated using four algorithms - geNorm, BestKeeper, NormFinder and RefFinder.ConclusionBased on the results we recommend the usage of TMN5 and TBL6 as the optimal candidate reference genes in qPCR experiments with normal and transgenic cotton plant tissues. AT1g65240 and PP2A1 can also be used if expression study includes squares. This study, for the first time successfully displays a data science driven genome-wide search method followed by experimental validation as a method of choice for selection of stable reference genes over the selection based on function alone.
Highlights
Cotton is one of the most important commercial crops as the source of natural fiber, oil and fodder
Based on the results we recommend the usage of Transmembrane superfamily member 5 (TMN5) and Protein trichome birefringence-like 6 (TBL6) as the optimal candidate reference genes in quantitative PCR (qPCR) experiments with normal and transgenic cotton plant tissues
This study, for the first time successfully displays a data science driven genome-wide search method followed by experimental validation as a method of choice for selection of stable reference genes over the selection based on function alone
Summary
Cotton is one of the most important commercial crops as the source of natural fiber, oil and fodder. To protect it from harmful pest populations number of newer transgenic lines have been developed. Expression levels of such genes often vary in response to experimental conditions, forcing the researchers to validate the reference genes for every experimental platform. Real time quantitative PCR (qPCR) is the most reliable, accurate and cost-effective technique for studying differential gene expression [1]. It was cautioned to discontinue their usage for qPCR, as numerous studies began to demonstrate that the transcript levels of these genes can vary considerably under different physiological conditions [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.