Abstract

Although methods in diagnosis and therapy of hepatocellular carcinoma (HCC) have made significant progress in decades, the overall survival (OS) of HCC remains dissatisfactory, so it is particularly important to find better diagnostic and prognostic biomarkers. In this study, we found a more reliable potential diagnostic biomarkers and constructed a more accurate prognostic evaluation model based on integrated transcriptome sequencing analysis of multiple independent data sets. First, we performed quality evaluation and differential analysis on seven Gene Expression Omnibus (GEO) data sets, and then comprehensively analyzed the differentially expressed genes with a robust rank aggregation algorithm. Next,Least absolute shrinkage and selection operator (LASSO) regression was used to establish an 8-gene prognostic risk score (RS) model. Finally, the prognostic model was further validated in the GEO data set. Also, RS has independence on other clinicopathological characteristics but has similarities in prognostic assessment compared with the T stage. Moreover, the combination of T stage and prognostic RS model based on the 8-gene had a better prognostic evaluation effect. In brief, our research suggest that the prognostic risk model of 8 genes has important clinical significance in HCC patients, and can further enrich the prognostic guidance value of the traditional T stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.