Abstract

BackgroundMutations affecting the Na+/ K+ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans. More than 50 mutations have been identified affecting the human ATP1A2 and ATP1A3 genes that are known to cause rapid-onset Dystonia Parkinsonism, familial hemiplegic migraine, alternating hemiplegia of childhood, and variants of familial hemiplegic migraine with neurological complications including seizures and various mood disorders. In flies, mutations affecting the ATPalpha gene have dramatic phenotypes including altered longevity, neural dysfunction, neurodegeneration, myodegeneration, and striking locomotor impairment. Locomotor defects can manifest as conditional bang-sensitive (BS) or temperature-sensitive (TS) paralysis: phenotypes well-suited for genetic screening.ResultsWe performed a genome-wide deficiency screen using three distinct missense alleles of ATPalpha and conditional locomotor function assays to identify novel modifier loci. A secondary screen confirmed allele-specificity of the interactions and many of the interactions were mapped to single genes and subsequently validated. We successfully identified 64 modifier loci and used classical mutations and RNAi to confirm 50 single gene interactions. The genes identified include those with known function, several with unknown function or that were otherwise uncharacterized, and many loci with no described association with locomotor or Na+/K+ ATPase function.ConclusionsWe used an unbiased genome-wide screen to find regions of the genome containing elements important for genetic modulation of ATPalpha dysfunction. We have identified many critical regions and narrowed several of these to single genes. These data demonstrate there are many loci capable of modifying ATPalpha dysfunction, which may provide the basis for modifying migraine, locomotor and seizure dysfunction in animals.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-014-0089-3) contains supplementary material, which is available to authorized users.

Highlights

  • Mutations affecting the Na+/ K+ ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans

  • Mutations affecting the alpha subunit of the Na+/K+ ATPase in humans are associated with at least three human diseases: Rapid-onset Dystonia Parkinsonism (RDP), Familial Hemiplegic Migraine (FHM), and Alternating Hemiplegia of Childhood (AHC; [4])

  • Primary genetic modifier screen To identify new genes that interact with ATPalpha we performed a deficiency screen using three characterized alleles: ATPalphaDTS1, ATPalphaCJ5 and ATPalphaCJ10

Read more

Summary

Introduction

Mutations affecting the Na+/ K+ ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans. More than 50 mutations have been identified affecting the human ATP1A2 and ATP1A3 genes that are known to cause rapid-onset Dystonia Parkinsonism, familial hemiplegic migraine, alternating hemiplegia of childhood, and variants of familial hemiplegic migraine with neurological complications including seizures and various mood disorders. Highly conserved Na+/K+ ATPases are responsible for maintaining ion gradients across the plasma membrane through ATP-dependent asymmetric translocation of Na+ and K+ ions These ion gradients maintain the resting potential of cells, which facilitates neural signaling and many essential secondary processes. Mutations affecting the alpha subunit of the Na+/K+ ATPase in humans are associated with at least three human diseases: Rapid-onset Dystonia Parkinsonism (RDP), Familial Hemiplegic Migraine (FHM), and Alternating Hemiplegia of Childhood (AHC; [4]).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.