Abstract

BackgroundGlobal RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5′-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. However, apart from the most well studied genomes of human and mouse, mammalian transcription has not been profiled with sufficiently high precision.ResultsWe prepared and sequenced Start-seq libraries from rat (Rattus norgevicus) primary neural progenitor cells. Over 48 million uniquely mappable reads from two independent biological replicates allowed us to define the TSSs of 7365 known genes in the rn6 genome, reannotating 2503 TSSs by more than 5 base pairs, characterize promoter-associated antisense transcription, and profile Pol II pausing. By combining TSS data with polyA-selected RNA sequencing, we also identified thousands of potential new genes producing stable RNA as well as non-genic transcripts representing possible regulatory elements.ConclusionsOur study has produced the first Start-seq dataset for the rat. Apart from profiling transcription initiation, our data reaffirm the prevalence of Pol II pausing across the rat genome and indicate conservation of pausing mechanisms across metazoan genomes. We suggest that pausing location, at least in mammals, is constrained by a distance from initiation of transcription, whether it occurs at or outside of a gene promoter. Abundant antisense transcription initiation around protein coding genes indicates that Pol II recruited to the vicinity of a promoter is distributed to available start sites of transcription at either DNA strand. Transcriptome profiling of neural progenitors presented here will facilitate further studies of other rat cell types as well as other organisms.

Highlights

  • Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters

  • TSSRNAs yield dual information: their 5′-ends precisely delineate the sites of transcription initiation, whereas their 3′-end positions indicate the locations of promoterproximal pausing [22]

  • We suggest that the Pol II machinery is commonly brought to the vicinity of the promoter and distributed according to its affinity to each potential start site within the local environment

Read more

Summary

Introduction

Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5′-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. In addition to refining the Transcription Start Sites (TSSs) of known genes, there is increasing interest in mapping non-genic transcription that does not produce stable RNA, but delineates non-genic regulatory elements [15,16,17,18]. Base-pair resolution TSSs for 7365 of the ~ 24, 000 currently annotated genes in the rn genome using the RefSeq annotation database, report the relationship of pausing with gene expression, and identify transcription start sites of new genes and potential non-genic regulatory elements. The work outlines a high-resolution landscape of transcription initiation and Pol II pausing in rat neural progenitors of the rat and provides a workflow for transcriptional profiling of other cell types in the rat as well as in other organisms

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.