Abstract

Given the unknown timing of the onset of an acute systemic inflammation in humans, the fine tuning of cascades and pathways involved in the associated hepatocyte response cannot be appraised in vivo. Therefore, the authors used a genome-wide and kinetic analysis in the human Hep3B hepatoma cell line challenged with a conditioned medium from bacterial lipopolysaccharide-stimulated macrophages. A complete coverage of the liver transcriptome disclosed 648 mRNAs whose change in abundance allowed for their clustering in mRNA subsets with an early, intermediate, or late regulation. The contribution of transcription, stability, or translation was appraised with genome-wide studies of the changes in nuclear primary transcripts, mRNA decay, or polysome-associated mRNAs. A predominance of mRNAs with decreased stability and the fact that translation alone controls a significant number of acute phase-associated proteins are prominent findings. Transcription and stability act independently or, more rarely, cooperate or even counteract in a gene-by-gene manner, which results in a unidirectional change in mRNA abundance. Waves of mRNAs for groups of functionally related proteins are up- or downregulated in an ordered fashion. This includes an early regulation of transcription-associated proteins, an intermediate repression of detoxication and metabolism proteins, and finally an enhanced translation and transport of a number of membranous or secreted proteins along with an enhanced protein degradation. In conclusion, this study provides a comprehensive and simultaneous overview of events in the human hepatocyte during the inflammatory acute phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call