Abstract

BackgroundTeat number is an important fertility trait for pig production, reflecting the mothering ability of sows. It is also a discrete and often canalized trait presenting bilateral symmetry with minor differences between the two sides, providing a potential power to evaluate fluctuating asymmetry and developmental instability. The knowledge of its genetic control is still limited. In this study, a genome-wide scan was performed with 183 microsatellites covering the pig genome to identify quantitative trait loci (QTL) for three traits related to teat number including the total teat number (TTN), the teat number at the left (LTN) and right (RTN) sides in a large scale White Duroc × Erhualian resource population.ResultsA sex-average linkage map with a total length of 2350.3 cM and an average marker interval of 12.84 cM was constructed. Eleven genome-wide significant QTL for TTN were detected on 8 autosomes including pig chromosomes (SSC) 1, 3, 4, 5, 6, 7, 8 and 12. Six suggestive QTL for this trait were detected on SSC6, 9, 13, 14 and 16. Eight chromosomal regions each on SSC1, 3, 4, 5, 6, 7, 8 and 12 showed significant associations with LTN. These regions were also evidenced as significant QTL for RTN except for those on SSC6 and SSC8. The most significant QTL for the 3 traits were all located on SSC7. Erhualian alleles at most of the identified QTL had positive additive effects except for three QTL on SSC1 and SSC7, at which White Duroc alleles increased teat numbers. On SSC1, 6, 9, 13 and 16, significant dominance effects were observed on TTN, and predominant imprinting effect on TTN was only detected on SSC12.ConclusionThe results not only confirmed the QTL regions from previous experiments, but also identified five new QTL for the total teat number in swine. Minor differences between the QTL regions responsible for LTN and RTN were validated. Further fine mapping should be focused on consistently identified regions with small confidence intervals, such as those on SSC1, SSC7 and SSC12.

Highlights

  • Teat number is an important fertility trait for pig production, reflecting the mothering ability of sows

  • The total mean of signed differences (RTN-LTN) was 0.03 and did not differ significantly from zero (t = 1.73; df = 2795; P < 0.084). This indicates that directional asymmetry could be excluded

  • The distribution of signed differences showed a leptokurtosis (g2 = 1.42, P < 0.001) and antisymmetry was absent. These results supported the differences between RTN and teat number (TTN) as fluctuating asymmetry [11]

Read more

Summary

Introduction

Teat number is an important fertility trait for pig production, reflecting the mothering ability of sows. It is a discrete and often canalized trait presenting bilateral symmetry with minor differences between the two sides, providing a potential power to evaluate fluctuating asymmetry and developmental instability. Along with an improved porcine litter size, teat number, especially the number of functional nipples, has become as a very important trait reflecting the mothering ability of sows [1]. Teat number in pigs is a discontinuous and often canalized trait presenting bilateral symmetry with minor difference between the two sides [4], which makes it possible to analyze developmental instability under genetic and environmental stress by evaluating fluctuating asymmetry (FA). Studies of factors affecting the number of teats in pigs are of interest for both biological and breeding reasons [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.