Abstract

Rice blast, caused by the fungus Magnaporthe oryzae, is one of the diseases most responsible for significantly decreasing the yield and quality of commercially grown rice. This study investigated the blast resistance response of japonica rice variety Yunyin (YY) treated with the Sichuan-43 isolate of M. oryzae. Seedlings of YY exhibited stronger resistance to blast than those of Lijiangxintuanheigu (LTH). The gene expression profile of YY treated with Sichuan-43 was determined using whole-genome microarray technology. Bioinformatics was used to identify putative resistance-related genes from the large number of genes assayed. Five candidate genes were further characterized by gene ontology classification analysis and pathway enrichment analysis, and were then integrated into various types of gene network regulation diagrams. Systematic bioinformatic analysis of the microarray provided a transcriptome map of YY, which helped to elucidate the mechanisms involved in blast resistance. Our results enhance the current understanding of the effects of rice blast resistance genes at the transcription level, and will facilitate further exploration of the molecular mechanism of blast resistance in YY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.