Abstract

Invasive fungal infections caused by Candida species are life threatening with high mortality, posing a severe public health threat. New technologies for rapid, genome-wide identification of virulence genes and therapeutic targets are urgently needed. Our recent engineering of a piggyBac (PB) transposon-mediated mutagenesis system in haploid Candida albicans provides a powerful discovery tool, which we anticipate should be adaptable to other haploid Candida species. In this protocol, we use haploid C. albicans as an example to present an improved version of the mutagenesis system and provide a detailed description of the protocol for constructing high-quality mutant libraries. We also describe a method for quantitative PB insertion site sequencing, PBISeq. The PBISeq library preparation procedure exploits tagmentation to quickly and efficiently construct sequencing libraries. Finally, we present a pipeline to analyze PB insertion sites in a de novo assembled genome of our engineered haploid C. albicans strain. The entire protocol takes ~7 d from transposition induction to having a final library ready for sequencing. This protocol is highly efficient and less labor intensive than alternative approaches and significantly accelerates genetic studies of Candida.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.