Abstract

The effects of systemic iron overload on the brain are unclear. Microarray analysis of brain gene expression in mice following short-term iron supplementation revealed altered expression of 287 genes, although most changes were small. Transcripts for the iron storage protein ferritin light chain increased 20% ( p = 0.002) and transcripts for iron regulatory protein 1, which negatively regulates ferritin translation, decreased 28% ( p = 0.048). There were expression changes for genes involved in important brain functions such as neurotransmission and nitric oxide signaling, which is dependent on iron. Few changes related to reactive oxygen species, inflammation or apoptosis, however expression changes were observed for genes causatively linked to neurological disorders, including Charcot-Marie-Tooth disease, neuronal ceroid lipofuscinosis and mucolipidosis. The latter involve intralysosomal lipofuscin build-up that may reflect lysosomal iron accumulation. The findings suggest that high iron intake may cause subtle brain effects of clinical relevance in some circumstances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.