Abstract

Albeit a relatively stable epigenetic modification, DNA methylation in plants can be repatterned and play important roles in response to biotic and abiotic stresses. However, whether DNA methylation dynamics may contribute to cope with mercury (Hg) stress in plants remains to be fully investigated. To probe the potential roles of DNA methylation dynamics in coping with Hg stress in rice. Whole-genome bisulfite sequencing was used to profile the DNA methylation patterns of a rice Hg-resistant line (RHg) selected from a heterozygous mutant of the DNA methyltransferase 1 gene (OsMET1+/-), together with its Hg-sensitive wild-type plants of cv. Nipponbare (Nip) under both normal and Hg stress conditions. Genome-wide locus-specific differential methylation regions (DMRs) were detected between RHg and Nip under normal condition, the predominant DMR patterns were CG hypo-DMRs, CHG hypo-DMRs and CHH hyper-DMRs. In both lines, more hyper- than hypo-DMRs were detected at all three sequence contexts (CG, CHG and CHH) under Hg stress relative to normal condition. Comparison of DNA methylation changes in the two lines under Hg stress indicates that RHg had a more dynamic methylome than the control (Nip). Original DMRs in RHg trended to transform to opposite status (from hyper- to hypo- or vice versa) under Hg stress condition. Gene ontology analysis revealed that Hg-resistance-related DMGs were enriched in diverse biological processes. Our results suggest genome-wide locus-specific DNA methylation repatterning can facilitate rapid acquisition of Hg resistance in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.