Abstract

Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfe-dma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky-Muller model of genic incompatibility. We developed microarray-based, restriction-site associated DNA (RAD) markers that identified approximately 1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk-segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only approximately 2% of the nuclear genome. This study demonstrates how advances in high-throughput, genome-wide genotyping can be applied to mapping reproductive isolation genes and speciation research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call