Abstract

HD-ZIP proteins comprise a plant-specific transcription factor family, which play pivotal roles in plant development and adaptation to ever-changing environment. Although HD-ZIP family members have been identified in some plant species, so far our knowledge about HD-ZIP genes in rapeseed is still limited. In this study, 178 Brassica napus HD-ZIP (BnaHDZ) family members were identified in the rapeseed genome. The phylogenetic relationship, chromosomal locations, intron-exon structures, motif composition, and expression patterns of the BnaHDZ members were analyzed. The BnaHDZ family can be phylogenetically divided into four categories (Ⅰ, Ⅱ, Ⅲ and Ⅳ). Genome-wide transcriptome analysis revealed that most of the HD-ZIP I members respond to at least one abiotic stress. Two closely homologous stress-responsive HD-ZIP Ⅰ genes, BnaHDZ22 and BnaHDZ149, were identified to be involved in drought and salt responses, and selected for further functional characterization. Overexpressing BnaHDZ149 in rapeseed increased salt sensitivity of the transgenic plants, whereas overexpressing BnaHDZ22 increased sensitivity of the transgenic plants to polyethylene glycol (PEG)-simulated drought stress. This research provides not only a comprehensive landscape of BnaHDZ genes, but also a theoretical basis for elucidating the molecular mechanism of the abiotic stress responses of the HD-ZIP family in rapeseed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.