Abstract
Wheat is an important cereal and half of the world population consumed it. Wheat faces environmental stresses and different techniques (CRISPR, gene silencing, GWAS, etc.) were used to enhance its production but RNA editing (RESs) is not fully explored in wheat. RNA editing has a special role in controlling environmental stresses. The genome-wide identification and functional characterization of RESs in different types of wheat genotypes was done. We employed six wheat genotypes by RNA-seq analyses to achieve RESs. The findings revealed that RNA editing events occurred on all chromosomes equally. RNA editing sites were distributed randomly and 10–12 types of RESs were detected in wheat genotypes. Higher number of RESs were detected in drought-tolerant genotypes. A-to-I RNA editing (2952, 2977, 1916, 2576, 3422, and 3459) sites were also identified in six wheat genotypes. Most of the genes were found to be engaged in molecular processes after a Gene Ontology analysis. PPR (pentatricopeptide repeat), OZ1 (organelle zinc-finger), and MORF/RIP gene expression levels in wheat were also examined. Normal growth conditions diverge gene expression of these three different gene families, implying that normal growth conditions for various genotypes can modify RNA editing events and have an impact on gene expression levels. While the expression of PPR genes was not change. We used Variant Effect Predictor (VEP) to annotate RNA editing sites, and Local White had the highest RESs in the CDS region of the protein. These findings will be useful for prediction of RESs in other crops and will be helpful in drought tolerance development in wheat.
Highlights
RNA editing was discovered 30 years ago
The value of Q20 was greater than 98%, whereas the value of Q30 was greater than 92%
To figure out why six wheat genotypes had varying numbers of RNA editing? We looked at the expression of three gene (PPR, MORF/RIP, and OZ1) families which might be involved in RNA editing process
Summary
RNA editing was discovered 30 years ago. RNA editing is a post-transcriptional variation of transcripts encoded by the chloroplast, nucleus, or mitochondrial genome of animals and plants, and it was first reported in protozoan mitochondria and in plant [1–4]. RNA molecules are covalently modified by RNA editing process in eukaryotes, resulting in substitutions, deletions of amino acids and variations in expression levels of genes, including changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.