Abstract

Genome-wide association studies have identified many loci associated with Alzheimer's dementia. However, these variants only explain part of the heritability of Alzheimer's disease (AD). As genetic epistasis can be a major contributor to the “missing heritability” of AD, we conducted genome-wide epistasis screening for AD pathologies in 2 independent cohorts. First, we performed a genome-wide epistasis study of AD-related brain pathologies (Nmax = 1318) in ROS/MAP. Candidate interactions were validated using cerebrospinal fluid biomarkers of AD in ADNI (Nmax = 1128). Further functional analysis tested the association of candidate interactions with neuroimaging phenotypes. For tau and amyloid-β pathology, we identified 2803 and 464 candidate SNP-SNP interactions, respectively. Associations of candidate SNP-SNP interactions with brain volume and white matter changes from neuroimages provides additional insights into their molecular functions. Transcriptional analysis supported possible gene-gene interactions identified by statistical screening through their co-expression in the brain. In summary, we outlined an exhaustive epistasis analysis to identify novel genetic interactions with potential roles in AD pathologies. We further delved into the functional relevance of candidate interactions by association with neuroimaging phenotypes and analysis of co-expression between corresponding gene pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.