Abstract

BackgroundWe have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans.MethodsHere we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression.ResultsThe ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as development of the cortex and cerebellum, cognition, memory, and spatial learning. Independent ChIP-quantitative PCR analyses confirm binding of RORA1 to promoter regions of selected ASD-associated genes, including A2BP1, CYP19A1, ITPR1, NLGN1, and NTRK2, whose expression levels (in addition to HSD17B10) are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD.ConclusionsFindings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these ASD-relevant genes as well as their associated pathways and functions which, in turn, may contribute to the underlying pathobiology of ASD.

Highlights

  • We have recently identified the nuclear hormone receptor RORA as a novel candidate gene for autism spectrum disorder (ASD)

  • Findings from this study indicate that RORA transcriptionally regulates Ataxin 2 binding protein 1 (A2BP1), Cytochrome P450 (CYP19A1), HSD17B10, Inositol 1 (ITPR1), Neuroligin 1 (NLGN1), and Neurotrophic tyrosine kinase (NTRK2), and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these ASD-relevant genes as well as their associated pathways and functions which, in turn, may contribute to the underlying pathobiology of ASD

  • It is remarkable that all of genes in annotation clusters 1 to 5 are contained in AutDB and/or AutismKB databases. (See Additional file 5 for a full list of genes and functions associated with annotation clusters 2 to 5.) This is noteworthy because, this nuclear hormone receptor is known to have pleiotropic functions in different tissues, neurological functions are clearly enriched among the putative transcriptional targets of RORA within the context of a human neuronal cell line

Read more

Summary

Introduction

We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). We have recently identified a novel autism candidate gene, retinoic acid-related (RAR) orphan receptor-alpha (RORA) [11] which is regulated by male and female hormones in a manner that may provide an explanation for the higher testosterone levels and, possibly, sex bias in ASD [12]. RORA has never before been associated with ASD, our recent studies have demonstrated: reduced expression of RORA in lymphoblastoid cell lines (LCL) derived from individuals with autism [13]; increased methylation leading to reduced expression of RORA in the LCL from cases vs sibling controls [11]; and decreased expression of RORA protein in the prefrontal cortex and the cerebellum of individuals with autism [11] Together, these results link these molecular changes in RORA in blood-derived peripheral cells to molecular pathology in the brain tissues of individuals with autism

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.