Abstract

BackgroundNAC (NAM, ATAF1/2, and CUC2) is one of the most prominent family of plant-specific transcription factors that play diverse roles in plant growth and development as well as in abiotic stress responses in plants. The members of this family are recognized by presence of typical conserved NAC domain at the N-terminal and diverse C-terminal region. ResultsIn this study, we have identified 101 Avena sativa NAC (AsNAC) genes from the available Avena genome database. Genes were analyzed for their physicochemical properties, conserved motifs, gene structure, chromosomal localization, phylogenetic relationship, and cis-acting elements. The phylogenetic analysis illustrated that there were 15 subgroups in both Avena sativa and Arabidopsis thaliana. Mainly four types of cis-acting regulatory elements were present in the promoter regions of NAC genes, including hormone-responsive, light-responsive, stress-responsive and growth and developmental responsive elements. The chromosomal mapping analysis concluded that 101 NAC genes of Avena sativa were unevenly distributed on 21 chromosomes. Expression analysis identified 27 Avena NAC genes that respond to salt stress based on transcriptomic data analysis available on the NCBI SRA database. SignificanceThe genome-wide identification and molecular analysis of NAC TFs involved in environmental stress responses have the ability to overcome the limitations that came across in producing the transgenic crops with superior quality and improved production under abiotic stressed conditions. Future prospectivesThese NAC genes may be considered as potential candidates for further explorations of functional analysis and could be used to develop stress tolerant lines in Avena sativa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.