Abstract

Wheat powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most serious foliar diseases of wheat, causing grain yield and quality degradation by affecting plant photosynthesis. It is an effective method to improve the disease resistance of wheat plants by molecular breeding. With the continuous development of sequencing technology, long intergenic noncoding RNAs (lincRNAs) have been discovered in many eukaryotes and act as key regulators of many cellular processes. In this study, 12 sets of RNA-seq data from wheat leaves pre- and post-pathogen infection were analyzed and 2,266 candidate lincRNAs were identified. Consistent with previous findings, lincRNA has shorter length and fewer exons than mRNA. The results of differential expression analysis showed that 486 DE-lincRNAs were selected as lincRNAs that could respond to powdery mildew stress. Since lincRNAs may be functionally related to their adjacent target genes, the target genes of these lincRNAs were predicted, and the GO and KEGG functional annotations of the predicted target genes were performed. Integrating the functions of target genes and the biological processes in which they were involved uncovered 23 lincRNAs that may promote or inhibit the occurrence of wheat powdery mildew. Co-expression patterns of lincRNAs with their adjacent mRNAs showed that some lincRNAs showed significant correlation with the expression patterns of their potential target genes. These suggested an involvement of lincRNAs in pathogen stress response, which will provide a further understanding of the pathogenic mechanism of wheat powdery mildew.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.