Abstract

Lipases play crucial roles in food digestion by degrading dietary lipids into free fatty acids and glycerols. The domesticated silkworm (Bombyx mori) has been widely used as an important Lepidopteran model for decades. However, little is known about the lipase gene family in the silkworm, especially their hydrolytic activities as digestive enzymes. In this study, a total of 38 lipase genes were identified in the silkworm genome. Phylogenetic analysis indicated that they were divided into three major groups. Twelve lipases were confirmed to be expressed in the midgut at both transcriptional and translational levels. They were grouped into the same gene cluster, suggesting that they could have similar physiological functions. Quantitative real-time PCR (qRT-PCR) analyses indicated that lipases were mainly expressed in anterior and middle midgut regions, and their expression levels varied greatly along the length of midgut. A majority of lipases were down-regulated in the midgut when larvae stopped feeding. However, a unique lipase gene (Bmlip10583) showed low expression level during feeding stage, but it was significantly up-regulated during the larvae-pupae transition. These results demonstrated that expression of silkworm lipases was spatially and temporally regulated in the midgut during larval development. Taken together, our results provide a fundamental research of the lipase gene family in the silkworm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call