Abstract

BackgroundWith the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking.ResultsWe proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions.ConclusionsHere we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

Highlights

  • With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed

  • We focused on Gene Ontology (GO) terms of molecular functions, biological processes, and cellular components

  • Avg. changes in interaction strengths (ACI) score represents the overall change in interaction strengths between genome-wide gene interaction networks formed in the two sample groups

Read more

Summary

Introduction

With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. In light of the dynamicity and complexity of gene interactions (reviewed in [2, 3]), a higher-order layer of interaction networks that considers gene-gene relationships modulated by (i.e., dependent on) key modulator genes, namely modulated gene interaction, was proposed (reviewed in [4]). In this sense, interaction of two genes can be strengthened when a modulator gene is expressed at high or low abundance. The scenario provides flexibility and interpretability to condition-specific and dynamic interaction networks

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.