Abstract
ATP-dependent SWI/SNF chromatin remodeling complexes (CRCs) are evolutionarily conserved multi-component machines that regulate transcription, replication, and genome stability in eukaryotes. SWI/SNF components play pivotal roles in development and various stress responses in plants. However, the compositions and biological functions of SWI/SNF complex subunits remain poorly understood in soybean. In this study, we used bioinformatics to identify 39 genes encoding SWI/SNF subunit distributed on the 19 chromosomes of soybean. The promoter regions of the genes were enriched with several cis-regulatory elements that are responsive to various hormones and stresses. Digital expression profiling and qRT-PCR revealed that most of the SWI/SNF subunit genes were expressed in multiple tissues of soybean and were sensitive to drought stress. Phenotypical, physiological, and molecular genetic analyses revealed that GmLFR1 (Leaf and Flower-Related1) plays a negative role in drought tolerance in soybean and Arabidopsis thaliana. Together, our findings characterize putative components of soybean SWI/SNF complex and indicate possible roles for GmLFR1 in plants under drought stress. This study offers a foundation for comprehensive analyses of soybean SWI/SNF subunit and provides mechanistic insight into the epigenetic regulation of drought tolerance in soybean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.