Abstract
BackgroundMicroRNAs (miRNAs) are small RNAs (sRNAs) approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. For this reason, we chose to identify and characterize the conserved and non-conserved miRNA component of peach (Prunus persica (L.) Batsch) focusing our efforts on both the recently released whole genome sequence of peach and sRNA transcriptome sequences from two tissues representing non-dormant leaves and dormant leaf buds. Conserved and non-conserved miRNAs, and their targets were identified. These sRNA resources were used to identify cold-responsive miRNAs whose gene targets co-localize with previously described QTLs for chilling requirement (CR).ResultsAnalysis of 21 million peach sRNA reads allowed us to identify 157 and 230 conserved and non-conserved miRNA sequences. Among the non-conserved miRNAs, we identified 205 that seem to be specific to peach. Comparative genome analysis between peach and Arabidopsis showed that conserved miRNA families, with the exception of miR5021, are similar in size. Sixteen of these conserved miRNA families are deeply rooted in land plant phylogeny as they are present in mosses and/or lycophytes. Within the other conserved miRNA families, five families (miR1446, miR473, miR479, miR3629, and miR3627) were reported only in tree species (Populustrichocarpa, Citrus trifolia, and Prunus persica). Expression analysis identified several up-regulated or down-regulated miRNAs in winter buds versus young leaves. A search of the peach proteome allowed the prediction of target genes for most of the conserved miRNAs and a large fraction of non-conserved miRNAs. A fraction of predicted targets in peach have not been previously reported in other species. Several conserved and non-conserved miRNAs and miRNA-regulated genes co-localize with Quantitative Trait Loci (QTLs) for chilling requirement (CR-QTL) and bloom date (BD-QTL).ConclusionsIn this work, we identified a large set of conserved and non-conserved miRNAs and describe their evolutionary footprint in angiosperm lineages. Several of these miRNAs were induced in winter buds and co-localized with QTLs for chilling requirement and bloom date thus making their gene targets potential candidates for mediating plant responses to cold stress. Several peach homologs of genes participating in the regulation of vernalization in Arabidopsis were identified as differentially expressed miRNAs targets, potentially linking these gene activities to cold responses in peach dormant buds. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to peach and/or other tree species.
Highlights
MicroRNAs are small RNAs approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts
One strand of the miRNA is degraded; the other is incorporated in a ribonucleoprotein complex, the RNA-induced silencing complex (RISC), which is involved in RNA interference (RNAi)
We found 31 miRNAs co-localizing with seven chilling requirement (CR)-QTLs and BD-QTLs
Summary
MicroRNAs (miRNAs) are small RNAs (sRNAs) approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. MicroRNAs (miRNAs) are small non-coding RNAs approximately 19 to 22 nucleotides (nt) in length that function in gene regulation at the post-transcriptional level [1] They are transcribed from one DNA strand as long precursors, which under the processing of various enzymes lead to mature double strand miRNAs [2]. A significant fraction of miRNA target genes seems to be involved in cellular defense against abiotic stresses such as nutrient deprivation, drought, heat, and UV exposure [4] or biotic stresses including attack by fungi such as Phakopsora pachyrhizi and Cronartium quercuum [5,6] , or bacteria such as Pseudomonas syringae [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.