Abstract

Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. Although protein-coding genes in bumblebees have been extensively annotated, regulatory sequences of the genome, such as promoters and enhancers, have been poorly annotated. To achieve a comprehensive profile of accessible chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we performed ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) on Bombus terrestris samples derived from four developmental stages: egg, larva, pupa, and adult, respectively. The ATAC-seq reads were mapped to the B. terrestris reference genome, and its accessible chromatin regions were identified and characterized using bioinformatic methods. We identified 36,390 chromatin accessible regions in total, including both shared and stage-specific chromatin accessible signals. Our study will provide an important resource, not only for uncovering regulatory elements in the bumblebee genome, but also for expanding our understanding of bumblebee biology throughout development.

Highlights

  • Background & SummaryBumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services[1,2]

  • To achieve a comprehensive profile of open chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we generated eight chromatin accessibility datasets for B. terrestris samples derived from its four developmental stages: egg, larva, pupa, and adult, respectively, with two biological replicates for each stage (Fig. 1a)

  • To understand the position of accessible chromatin regions relative to their nearest gene, we compared the coordinates of ATAC-seq peaks with that of B. terrestris protein-coding genes

Read more

Summary

Background & Summary

Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services[1,2]. To achieve a comprehensive profile of open chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we generated eight chromatin accessibility datasets for B. terrestris samples derived from its four developmental stages: egg, larva, pupa, and adult, respectively, with two biological replicates for each stage (Fig. 1a). In this experiment, we used whole animals, containing multiple cell types, for ATAC-seq. To understand the position of accessible chromatin regions relative to their nearest gene, we compared the coordinates of ATAC-seq peaks with that of B. terrestris protein-coding genes. We deposited the identified differential ATAC-seq peaks between developmental stages in Figshare[18]

Methods
Findings
Code availability

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.