Abstract

HMA (heavy metal associated) is a member of the ATPases protein family involved in metal transport in plants. This study characterizes several HMA3 homologs and infers their molecular functions in different plant species. Arabidopsis AtHMA3 (AT4G30120) was used as a reference to retrieve 11 HMA3 homologs having 97–100% query cover, 535–542 residues, 56,983 to 58,642 (Da) molecular weight, and 5.74 to 8.16 pI value, 29.10 to 33.89 instability index, and 0.222 to 0.380 grand average of hydropathicity. Topological analyses showed 4 transmembrane domains in these HMA3 homologs positioned similarly in terms of cytoplasmic and non-cytoplasmic regions along with ∼22–28% α-helices, ∼22–28% extended strands, and ∼50% random coils. HMA3 protein of Arabidopsis lyrata subsp. lyrata and Eutrema salsugineum are located at chromosome 2, while others are positioned at chromosome 4. All these HMA3 homologs are localized in the plasma membrane sharing a few common biological and molecular functions. Besides, these HMA3 genes contain 8–9 exons in which promoter positions are varied among the homologs. The cis-acting elements of HMA3 genes were projected to be involved with stress response, anaerobic induction, and light-responsive regulation in plants. Three out of five motifs encode E1-E2_ATPase involved in proton-pumping in the plasma membrane. The Arabidopsis thaliana HMA3 protein clustered with Camelina sativa and Capsella rubella show a close phylogenetic relationship. Also, AtHMA3 exhibits a close association with AtHMA3 with MTPA2, ZAT, NRAMP3, IRT2, and NRAMP2 under the local network of AtHMA3 linked to metal transport. Further, AtHMA3 is most potentially expressed during senescence, germinating seed, seedlings, young rosette, bolting, and young flower. In addition, AtHMA3 showed a significant upregulation (>6.0 fold) under Fe-deficiency. These findings may provide essential background to perform wet-lab experiments to understand the role of HMA3 in metal homeostasis.

Highlights

  • Heavy metals are abundant in nature due to natural and anthropogenic causes

  • Arabidopsis AtHMA3 was searched in the NCBI database to get the FASTA sequence of the protein (NP_194741.2) and mRNA (NM_119158.4)

  • The analysis showed similar physicochemical properties, gene organization, and conserved motifs related to metal transport

Read more

Summary

Introduction

Heavy metals are abundant in nature due to natural and anthropogenic causes. Heavy metals are taken up by humans through water and food-based meals and may cause serious health problems. Many of the metals, such as Fe, Cu, Zn, are essential for plants, but they need to be at an optimized level. Some of the heavy metals (Pb, Cd) are highly toxic to plants hampering photosynthesis, nutrient uptake, and yield in plants[1]. Plants acclimatize different strategies consisting of uptake, sequestration, and chelation to regulate metal homeostasis in withstanding heavy metal toxicity[2]. The association of different metal transporters and their binding capacity play an integral part in the cellular detoxification and maintenance of metals in plants

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call