Abstract

Autophagy is a common physiological process in organisms, including higher plants. The ATG8 subfamily, the core member of the autophagy-related gene (ATG) family, plays a key role in plant growth and development and nutrient stress responses. However, the core ATG8 homologs and their roles in stress resistance remain elusive in allotetraploid rapeseed (AACC, Brassica napus L.). In this study, we identified 29 ATG8 subgroup members, consisting of three phylogenetic clades, based on the analysis of genomic annotation and conserved motifs. Differential transcriptional responses of BnaATG8s to salt stress, nitrogen limitation, and other nutrient stresses were investigated, and we identified BnaA8.ATG8F as the core ATG8 member through gene co-expression network analysis. Decreased BnaA8.ATG8F expression repressed the salt tolerance of transgenic rapeseed plants by significantly reducing the root Na+ retention under salt stress. Moreover, downregulation of BnaA8.ATG8F increased nitrogen (N) limitation sensitivity of transgenic rapeseed plants through decreasing N uptake, translocation, and enhancing N remobilization under nitrogen starvation. In summary, we identified the core ATG8 homologs and characterized their physiological and molecular mechanisms underlying salt stress tolerance and nitrogen limitation adaptation. Our results may provide elite genetic resources for the genetic improvement of nutrient stress tolerance in rapeseed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call