Abstract
Zinc/iron-regulated transporter-like protein (ZIP) family genes play crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. Here, genome-wide analysis identified 30 peanut AhZIP genes that were divided into four classes. Most AhZIPs experienced whole-genome or segmental duplication. AhZIP proteins harbored 3–8 transmembrane domains and a typical ZIP domain, showing considerable homology with BbZIP from Bordetella bronchiseptica. Clustered AhZIPs generally share similar gene/protein structures; however, unique features were found in AhIRT1.2, AhZIP1.2, AhZIP3.5 and AhZIP7.8. RNA-seq data revealed that AhZIP2.1/2.2, AhZIP4.1/4.2 and AhZIP11.1/11.2 were highly and preferentially expressed in roots, nodule and reproductive tissues. RT-qPCR analysis indicated that transcriptional responses of AhZIPs to Fe/Zn deficiency are cultivar dependent. The expressions of AhIRT1.1, AhIRT1.2 and AhZIP6.1 were closely related to Fe uptake and translocation. AhIRT1.1 and AhZIP7.2 expression were significantly correlated with Zn accumulation. The expression of AhIRT1.1, AhIRT1.2, AhZIP3.6, AhZIP6.1 and AhZIP11.1 was associated with Mn uptake and translocation. The results confirmed that AhZIP genes play crucial roles in the uptake and transport of Fe, Zn and Mn in peanut, providing clues to further functionally characterize AhZIP genes in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.