Abstract

Transcription factors (TFs) are essential regulators during gene expression. To better understand TF genes in tomato (Solanum lycopersicum L.), a silico genomic analysis of TF prediction was performed through the tomato genome. A total of 2026 TF genes were identified in the tomato genome, and they account for approximately 5.83% of its estimated total number of genes. These genes can be also classified into 57 families. The largest family is famous for the MYB superfamily and comprises 220 MYB TF genes. Predicted TFs were distributed across all 12 chromosomes with different densities. Chromosome 01 possesses 241 TFs, accounting for the largest number of TFs. According to microarray and expressed sequence tag data, expression patterns of 298 TFs showed that many of these TFs play roles in growth, development, diverse biological processes and responses to various stresses of S. lycopersicum L. Eight TF genes were further analyzed by reverse transcription polymerase chain reaction analysis in different tissues (root, stem, leaf, flower, and fruit). To the best of our knowledge, this study is the first to report genome-wide analysis of tomato TF gene families. This study provides valuable information regarding classification and putative functions of TFs in Solanaceae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.