Abstract

Stearoyl-acyl carrier protein (ACP) Δ9 desaturase (SAD) is a critical fatty acid dehydrogenase in plants, playing a prominent role in regulating the synthesis of unsaturated fatty acids (UFAs) and having a significant impact on plant growth and development. In this study, we conducted a comprehensive genomic analysis of the SAD family in barley (Hordeum vulgare L.), identifying 14 HvSADs with the FA_desaturase_2 domain, which were divided into four subgroups based on sequence composition and phylogenetic analysis, with members of the same subgroup possessing similar genes and motif structures. Gene replication analysis suggested that tandem and segmental duplication may be the major reasons for the expansion of the SAD family in barley. The promoters of HvSADs contained various cis-regulatory elements (CREs) related to light, abscisic acid (ABA), and methyl jasmonate (MeJA). In addition, expression analysis indicated that HvSADs exhibit multiple tissue expression patterns in barley as well as different response characteristics under three abiotic stresses: salt, drought, and cold. Briefly, this evolutionary and expression analysis of HvSADs provides insight into the biological functions of barley, supporting a comprehensive analysis of the regulatory mechanisms of oil biosynthesis and metabolism in plants under abiotic stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call