Abstract

Hylurgus ligniperda belongs to Hylurgus Latreille, Curculionidae, Coleoptera. It primarily damages the base and roots of the trunk of pine plants. Short-term treatment at 42 °C can damage Hylurgus ligniperda; therefore, temperature is a vital factor limiting its spread. Heat shock proteins (HSPs) can protect, remove, and repair proteins to help H. ligniperda withstand high temperatures. However, information on HSP genes in H. ligniperda remains limited. In the study, we considered H. ligniperda as the focus of research and identified 56 HligHSP genes at the genome-wide level. These genes were mapped to the cytoplasm or nucleus. An identical subfamily exhibited a closely similar distribution of conserved domains. Combined with the transcriptome data collected in previous studies, we screened six candidate genes, namely HligsHSP-3, HligsHSP-4, HligHSP60-16, HligHSP70-3, HligHSP70-4, and HligHSP90-1, which are specifically expressed during different high-temperature treatments. A quantitative polymerase chain reaction was performed to measure the expression of these six HligHSPs in seven temperature treatment conditions. These genes may be involved in the heat resistance mechanism in adults. Our findings provided a foundation for further studying the heat resistance mechanism in H. ligniperda.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.