Abstract

The tea leaf is economically important, while reproductive growth reduce tea output. However, little is known about flowering mechanisms in tea plants. Here, we determined the approximate times of floral induction, floral transition and floral organ differentiation by morphological observation. We identified 401 and 356 flowering-related genes from the genomes of Camellia sinensis var. sinensis and Camellia sinensis var. assamica, respectively. Then, we compared the expression profiles of flowering-related genes in floriferous and oliganthous cultivars, the result showed that PRR7, GI, GID1B and GID1C expression is correlated with the floral induction; LFY, PNF and PNY expression was correlated with floral bud formation. Transcriptome analysis also showed that GI, PRR7 and GID1 were correlated with stress-induced flowering. Thus, we proposed putative mechanisms of flowering in tea plants. This study provides new insights into flowering and a theoretical basis for balancing vegetative and reproductive growth in tea plants and other economical plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.