Abstract

The bZIP transcription factors are well-known transcription regulators and play a key role in regulating various developmental, biological processes, and stress responses in plants. However, information on bZIP transcription factors is not yet available in oil palm, an important oil yielding crop. The present study identified the 97 bZIP transcription factor family members in oil palm genome via a genome-wide approach. Phylogenetic analysis clustered all EgbZIPs into 12 clusters with Arabidopsis and rice bZIPs. EgbZIP gene structure analysis showed a distinct variation in the intron-exon organization among all EgbZIPs. Conserved motif analysis demonstrated the occurrence of ten additional conserved motifs besides having a common bZIP domain. All the identified 97 EgbZIPs were unevenly distributed on 16 chromosomes and exhibited tandem duplication in oil palm genome. Our results aslo demonstrated that tissue-specific expression patternsof EgbZIPs based on the available transcriptome data of six different tissue of oil palm. Stress-responsive expression analysis showed that 11EgbZIP transcription factors were highly expressed under cold, salinity, drought stress conditions. Taken together, our findings will provide insightful information on bZIP transcription factors as one of the stress-responsive regulators in oil palm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call