Abstract

Lysophosphatidyl acyltransferase (LPAT) is one of the major triacylglycerol synthesis enzymes, controlling the metabolic flow of lysophosphatidic acid to phosphatidic acid. Experimental studies in Arabidopsis have shown that LPAT activity is exhibited primarily by three distinct isoforms, namely the plastid-located LPAT1, the endoplasmic reticulum-located LPAT2, and the soluble isoform of LPAT (solLPAT). In this study, 24 putative genes representing all LPAT isoforms were identified from the analysis of 11 complete genomes including green algae, red algae, diatoms and higher plants. We observed LPAT1 and solLPAT genes to be ubiquitously present in nearly all genomes examined, whereas LPAT2 genes to have evolved more recently in the plant lineage. Phylogenetic analysis indicated that LPAT1, LPAT2 and solLPAT have convergently evolved through separate evolutionary paths and belong to three different gene families, which was further evidenced by their wide divergence at gene structure and sequence level. The genome distribution supports the hypothesis that each gene encoding a LPAT is not duplicated. Mapping of exon-intron structure of LPAT genes to the domain structure of proteins across different algal and plant species indicates that exon shuffling plays no role in the evolution of LPAT genes. Besides the previously defined motifs, several conserved consensus sequences were discovered which could be useful to distinguish different LPAT isoforms. Taken together, this study will enable the generation of experimental approximations to better understand the functional role of algal LPAT in lipid accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.