Abstract

A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call