Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted watermelon, and its relevance to diverse biological processes and environmental adaptation.
Highlights
The primary objective of horticultural industry has been to increase yield and productivity, in order to provide the vegetables needed by a growing world population during the past years
High-throughput Sequencing of Watermelon Small RNAs In order to study the role of miRNAs in grafted watermelon, watermelon
IVSM9), an inbred line was grafted onto two rootstocks: Bottle gourd ‘Yongzhen’ (Lagenaria siceraria), and squash ‘Shintozwa’ (Cucurbita maxima6Cucurbita moschata) (Wm/Sq), using ‘insertion grafting’ method as described by Lee [3], and watermelon plants grafted onto watermelon (Wm/Wm) were used as control (Fig. 1)
Summary
The primary objective of horticultural industry has been to increase yield and productivity, in order to provide the vegetables needed by a growing world population during the past years. Due to limited availability of arable land and high market demand for off-season vegetables, crops production is continuously performed on unsuitable conditions in parts of the world. These unfavourable conditions include environments that are too drought, soil salinity, extreme temperatures, and increased incidence of pests and soil-borne diseases like fusarium wilt caused by Fusarium spp [1]. Due to these conditions, various physiological and pathological are disordered leading to severe crop losses. Grafting has positive effects on vegetable quality such as improvement of physical properties, flavour and health-related compounds in the product [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.