Abstract

Quantitative real-time polymerase chain reaction (qPCR), as one of the most sensitive and precise gene expression analysis methods, is frequently used to validate data obtained in high-through-put assays. qPCR requires reference genes with stable transcription for accurate normalization. However, no systematic studies on such genes have been performed in the genus Schistosoma japonicum. In this study, eight novel candidate genes selected from a microarray analysis and four commonly used reference genes were systematically validated in a series of qPCR experiments. Based on the results of geNorm, Normfinder, BestKeeper, and the comparative delta-cycle threshold (ΔCT) integrated analysis, the genes PSMD4, NDUFV2, and TPC2L were found to be most stably expressed in all S. japonicum developmental stages; meanwhile, ACTB and TUBA were found as the least stably expressed genes. This study provided, at the first time, data for genes that can be explored as reliable references in transcriptomic analysis of S. japonicum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.