Abstract

Research Highlights: This study identified the cell cycle genes in birch that likely play important roles during the plant’s growth and development. This analysis provides a basis for understanding the regulatory mechanism of various cell cycles in Betula pendula Roth. Background and Objectives: The cell cycle factors not only influence cell cycles progression together, but also regulate accretion, division, and differentiation of cells, and then regulate growth and development of the plant. In this study, we identified the putative cell cycle genes in the B. pendula genome, based on the annotated cell cycle genes in Arabidopsis thaliana (L.) Heynh. It can be used as a basis for further functional research. Materials and Methods: RNA-seq technology was used to determine the transcription abundance of all cell cycle genes in xylem, roots, leaves, and floral tissues. Results: We identified 59 cell cycle gene models in the genome of B. pendula, with 17 highly expression genes among them. These genes were BpCDKA.1, BpCDKB1.1, BpCDKB2.1, BpCKS1.2, BpCYCB1.1, BpCYCB1.2, BpCYCB2.1, BpCYCD3.1, BpCYCD3.5, BpDEL1, BpDpa2, BpE2Fa, BpE2Fb, BpKRP1, BpKRP2, BpRb1, and BpWEE1. Conclusions: By combining phylogenetic analysis and tissue-specific expression data, we identified 17 core cell cycle genes in the Betulapendula genome.

Highlights

  • Many important life processes are closely related to mitosis in higher organisms

  • According to the identified cell cycle genes in Arabidopsis thaliana, a total of 59 cell cycle genes were obtained in birch through homology comparison (Table 1)

  • Analysis of protein characteristics showed that the lengths of the amino acid sequences encoded by these cell cycle genes range from 69 amino acids (Bpev01.c0457.g0045) to 1316 amino acids (Bpev01.c1113.g0001), and the relative molecular mass ranges from 7 kDa to 14 kDa

Read more

Summary

Introduction

Many important life processes are closely related to mitosis in higher organisms. The regulation mechanism of eukaryotic cell division cycle is one of the hot topics in cell biology and molecular biology. Research on the regulation of the plant cell cycle started later than that of mammals and yeast. Great progress has been made in the research of cell cycles in higher plants in recent years [1,2,3,4]. The progression of cell cycles is the result of interaction between the gene expression and the external factors. The cell cycle in higher plants is strictly regulated in the course of its growth and development

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call