Abstract

Although chronic myeloid leukemia (CML) can be effectively treated using BCR-ABL1 kinase inhibitors, resistance due to kinase alterations or to BCR-ABL1 independent mechanisms remain a therapeutic challenge. For the latter, the underlying mechanisms are widely discussed; for instance, gene expression changes, epigenetic factors and alternative signaling pathway activation. In the present study, in vitro-CML cell models of resistance against the tyrosine kinase inhibitors (TKIs) imatinib (0.5 and 2 µM) and nilotinib (0.1 µM) with biological replicates were generated to identify novel mechanisms of resistance. Subsequently, genome-wide mRNA expression and DNA methylation were analyzed. While mRNA expression patterns differed largely between biological replicates, there was an overlap of 71 genes differentially expressed between cells resistant against imatinib or nilotinib. Moreover, all TKI resistant cell lines demonstrated a slight hypermethylation compared with native cells. In a combined analysis of 151 genes differentially expressed in the biological replicates of imatinib resistance, cell adhesion signaling, in particular the cellular matrix protein fibronectin 1 (FN1), was significantly dysregulated. This gene was also downregulated in nilotinib resistance. Further analyses showed significant FN1-downregulation in imatinib resistance on mRNA (P<0.001) and protein level (P<0.001). SiRNA-mediated FN1-knockdown in native cells reduced cell adhesion (P=0.02), decreased imatinib susceptibility visible by higher Ki-67 expression (1.5-fold, P=0.04) and increased cell number (1.5-fold, P=0.03). Vice versa, recovery of FN1-expression in imatinib resistant cells was sufficient to partially restore the response to imatinib. Overall, these results suggested a role of cell adhesion signaling and fibronectin 1 in TKI resistant CML and a potential target for novel strategies in treatment of resistant CML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.