Abstract

Pseudomonas sp. strain 273 grows with medium-chain terminally fluorinated alkanes under oxic conditions, releases fluoride, and synthesizes long-chain fluorofatty acids. To shed light on the genes involved in fluoroalkane metabolism, genome, and transcriptome sequencing of strain 273 grown with 1,10-difluorodecane (DFD), decane, and acetate were performed. Strain 273 harbors three genes encoding putative alkane monooxygenases (AlkB), key enzymes for initiating alkane degradation. Transcripts of alkB-2 were significantly more abundant in both decane- and DFD-grown cells compared to acetate-grown cells, suggesting AlkB-2 catalyzes the attack on terminal CH3 and CH2F groups. Coordinately expressed with alkB-2 was an adjacent gene encoding a fused ferredoxin-ferredoxin reductase (Fd-Fdr). Phylogenetic analysis distinguished AlkB that couples with fused Fd-Fdr reductases from AlkB with alternate architectures. A gene cluster containing an (S)-2-haloacid dehalogenase (had) gene was up-regulated in cells grown with DFD, suggesting a possible role in the removal of the ω-fluorine. Genes involved in long-chain fatty acid biosynthesis were not differentially expressed during growth with acetate, decane, or DFD, suggesting the bacterium's biosynthetic machinery does not discriminate against monofluoro-fatty acid intermediates. The analysis sheds first light on genes and catalysts involved in the microbial metabolism of fluoroalkanes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call