Abstract

Genome-wide DNA methylation was used to study the lipid-lowering effect of Cyclocarya paliurus (Batal) Iljinskaja polysaccharide (CPP). The objective of this study was to investigate the hypolipidemic effects and the potential underlying mechanisms of action of CPP-2 in high-fat emulsion (HFE)-induced mice. The results showed that CPP-2 reduced the level of genome-wide DNA methylation in the liver of HFE-induced mice, which had a lipid-lowering effect by regulating the AMP-activated protein kinase (AMPK) signaling-, fatty acid metabolism-, fatty acid biosynthesis- and adipocytokine signaling pathways. A series of lipid metabolism genes were screened out by conjoint analysis of the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Hereafter, fatty acid synthase (FAS) and peroxisome proliferators-activated receptor α (PPARα) as target genes were selected to validate the accuracy of the results. The findings demonstrated that CPP-2 might be effective in lowering the lipid content, thereby protecting against HFE-induced hyperlipidemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.