Abstract

The hoverfly, Eupeodes corollae, is a worldwide natural enemy of aphids and a plant pollinator. To provide insights into the biology of this species, we examined its population genetic structure by obtaining 1.15-GB random genomic sequences using next-generation sequencing and developing genome-wide microsatellite markers. A total of 79,138 microsatellite loci were initially isolated from the genomic sequences; after strict selection and further testing of 40 primer pairs in eight individuals, 24 polymorphic microsatellites with high amplification rates were developed. These microsatellites were used to examine the population genetic structure of 96 individuals from four field populations collected across southern to northern China. The number of alleles per locus ranged from 5 to 13 with an average of 8.75; the observed and expected heterozygosity varied from 0.235 to 0.768 and from 0.333 to 0.785, respectively. Population genetic structure analysis showed weak genetic differentiation among the four geographical populations of E. corollae, suggesting a high rate of gene flow reflecting likely widespread migration of E. corollae in China.

Highlights

  • Eupeodes corollae is one of the most common hoverflies with a worldwide distribution [1, 2]

  • Trimmed reads were assembled into 2,563,327 scaffolds with a total length of 1.15 Gb ranging from 100 bp to 437.63 KB, with an N50 of 1510 bp

  • The frequency of dinucleotide repeats in E. corollae is unusually low when compared with other insect species such as Grapholita molesta [34] (Lepidoptera), Aphis glycines (Hemiptera) [42] and Obolodiplosis robiniae (Diptera) [43], which shows the distribution of microsatellites to vary among species [44, 45]

Read more

Summary

Introduction

Eupeodes corollae is one of the most common hoverflies with a worldwide distribution [1, 2]. The larval stage of this species is mostly insectivorous, feeding mainly on aphids [3,4,5] while adults are pollinators [6,7,8]. Many hoverfly species are important biological control agents of aphids due to their rapid dispersal and absence of summer diapause compared with other aphidophaga [9]. Understanding the biology and behavior of hoverflies can help in assessing their potential as biological control agents of aphids. Hoverflies migrate seasonally as revealed by radar monitoring [10] and isotopic tools [11].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call