Abstract

We can now analyze 3D physical interactions of chromatin regions with chromatin conformation capture technologies, in addition to the 1D chromatin state annotations, but methods to integrate this information are lacking. We propose a method to integrate the chromatin state of interacting regions into a vector representation through the contact-weighted sum of chromatin states. Unsupervised clustering on integrated chromatin states and Micro-C contacts reveals common patterns of chromatin interaction signatures. This provides an integrated view of the complex dynamics of concurrent change occurring in chromatin state and in chromatin interaction, adding another layer of annotation beyond chromatin state or Hi-C contact separately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.