Abstract

e16527 Background: Bladder cancer (BC) is the 9th most commonly diagnosed cancer worldwide and each year responsible for 165,000 deaths. Neoadjuvant combination chemotherapy, followed by radical cystectomy, is used for the management of localized muscle-invasive bladder cancer. One of the critical challenges in this therapeutic regimen is monitoring the tumor load to assess therapeutic efficacy – this is typically performed by assessing pathological downstaging in the cystectomy specimen. A high frequency of patients presents with T0N0 at cystectomy (no indication of residual disease), and consequently, it is vital to investigate organ preservation approaches to identify those patients who may qualify for bladder preservation. For precision oncology, we need to develop quantitative and non-invasive diagnostic methodologies to help the oncologist tailor the treatments to individual patients and monitor them for further clinical decision-making. Methods: Cell-free DNA (cfDNA) mutation detection has shown significant promise in its ability to monitor minimal residual disease and disease relapse by detection of cancer mutations in the peripheral blood. However, the combination of low tumor fraction and limited input material obtained from a typical plasma sample restricts the probability of detecting low metastatic burden in cfDNA through current deep targeted sequencing methods. Results: Here we present results from applying whole-genome sequencing (WGS) of cfDNA. We integrate a genome-wide mutation and copy number monitoring approach coupled with advanced signal processing and Artificial Intelligence (AI) for measuring the tumor load from low-input blood samples (̃1mL of plasma) with ultra-sensitive detection. The increased sensitivity allowed clinical detection of tumor fraction down to 8*10-5 and recurrence detection sensitivity achieving > 65% at the first two months post-surgery. The WGS cfDNA approach is being evaluated on a patient cohort of more than 50 bladder cancer patients with longitudinal plasma sampling during neoadjuvant chemotherapy (response measure), pre-cystectomy (complete response measure), and post-surgery (relapse monitoring). Conclusions: The results indicate the clinical potential of genome-wide mutation integration as an ultra-sensitive, non-invasive diagnostic method for bladder cancer clinical management and bladder organ preservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call