Abstract
Circadian rhythms coordinate the responses of organisms with their daily fluctuating environments, by establishing a temporal program of gene expression. This schedules aspects of metabolism, physiology, development and behaviour according to the time of day. Circadian regulation in plants is extremely pervasive, and is important because it underpins both productivity and seasonal reproduction. Circadian regulation extends to the control of environmental responses through a regulatory process known as circadian gating. Circadian gating is the process whereby the circadian clock regulates the response to an environmental cue, such that the magnitude of response to an identical cue varies according to the time of day of the cue. Here, we show that there is genome-wide circadian gating of responses to cold temperatures in plants. By using bread wheat as an experimental model, we establish that circadian gating is crucial to the programs of gene expression that underlie the environmental responses of a crop of major socioeconomic importance. Furthermore, we identify that circadian gating of cold temperature responses are distributed unevenly across the three wheat subgenomes, which might reflect the geographical origins of the ancestors of modern wheat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.