Abstract
Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a "topos," which represents the regulatory landscape around gene promoters. Using GM12878 cells, we predicted the 3D structure of over 10,000 active gene topoi and stored them in the 3DGene database. Data mining revealed folding motifs and their link to Gene Ontology features. We computed a structural diversity score and identified influential nodes-chromatin sites that frequently interact with gene promoters, acting as key regulators. These nodes drive structural diversity and are tied to gene function. e-HiP-HoP provides a framework for modeling high-resolution chromatin structure and a mechanistic basis for chromatin contact networks that link 3D gene structure with function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.