Abstract

Phosphatidylcholine has essential functions in many eukaryotic cells, and its de novo biosynthesis is rate-limited by cytidine triphosphate:phosphocholine cytidylyltransferase (CCT). Although the biological and biochemical functions of CCT have been reported in mammals and several plants, this key enzyme has yet to be examined at a genome-wide level. As such, certain fundamental questions remain unanswered, including the evolutionary history, genetic and functional relationships, and structural variations among CCTs in the green lineage. In the current study, in-depth phylogenetic analysis, as well as the conservation and diversification in CCT gene structure and motif patterns, indicated that CCTs exist broadly in chlorophytes, bryophytes, lycophytes, monilophytes, gymnosperms, early-diverging angiosperms, monocots, and eudicots, and form eight relatively conserved clades. To further explore the potential function of selection pressure, we conducted extensive selection pressure analysis with a representative CCT gene, CCT1 from the model plant Arabidopsis thaliana (AthCCT1), and identified two positive selection sites, L59 and Q156. Site-directed mutagenesis and in vitro enzyme assays demonstrated that these positively selected sites were indeed important for the activity and substrate affinity of AthCCT1, and subsequent 3D structure analyses explained the potential biochemical mechanism. Taken together, our results unraveled the evolution and diversity of CCTs in the green lineage, as well as their association with the enzyme's biochemical and structural properties, and expanded our understanding of this important enzyme at the genome-wide level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.