Abstract

Berberine bridge enzymes (BBEs), functioning as carbonate oxidases, enhance disease resistance in Arabidopsis and tobacco. However, the understanding of BBEs' role in monocots against pathogens remains limited. This study identified 81 TaBBEs with FAD_binding_4 and BBE domains. Phylogenetic analysis revealed a separation of the BBE gene family between monocots and dicots. Notably, RNA-seq showed TaBBE64's significant induction by both pathogen-associated molecular pattern treatment and Puccinia striiformis f. sp. tritici (Pst) infection at early stages. Subcellular localization revealed TaBBE64 at the cytoplasmic membrane. Knocking down TaBBE64 compromised wheat's Pst resistance, reducing reactive oxygen species and promoting fungal growth, confirming its positive role. Molecular docking and enzyme activity assays confirmed TaBBE64's glucose oxidation to produce H2O2. Since Pst relies on living wheat cells for carbohydrate absorption, TaBBE64's promotion of glucose oxidation limits fungal growth and resists pathogen infection. This study sheds light on BBEs' role in wheat resistance against biotrophic fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.