Abstract
The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members. The duplication patterns provided evidence that both tandem and segmental duplications contributed to the expansion of this family. Ka/Ks ratio analysis demonstrated that, following duplication events, the genes have been subjected to purifying selection pressure, leading to selective constraints on their protein sequence. This selective pressure provides a dosage benefit against stresses in plants. Additionally, a transcriptome analysis indicated that some duplicated genes gained novel functions, emphasizing the contribution of both dosage effect and functional divergence to the family functionalities. Furthermore, an orthologous relationship study showed that 60% of genes descended from a common ancestor of Rosid and Asterid lineages, 28% from the Asterid ancestor, and 12% evolved in the lettuce lineage, suggesting lineage-specific roles in adaptive evolution. These results provide valuable insights into the evolutionary mechanisms of the AP2/ERF gene family in lettuce, with implications for enhancing abiotic stress tolerance, ultimately contributing to the genetic improvement of lettuce crop production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.