Abstract

Eucommia ulmoides is an economic tree that can biosynthesize secondary metabolites with pharmacological functions. Genetic basis of biosynthesis of these compounds is almost unknown. Therefore, genomic-wide association study was performed to exploit the genetic loci maybe involved in biosynthetic pathways of 5 leaf inclusions (aucubin, chlorogenic acid, gutta-percha, polyphenols, total flavonoids). It was shown that contents of the 5 leaf metabolites have a wide variation following normal distribution. A total of 2 013 102 single nucleotide polymorphism (SNP) markers were identified in a population containing 62 individual clones. Through genome-wide association study analysis, many SNP loci were identified perhaps associated with phenotypes of the leaf inclusions. Higher transcriptional levels of the candidate genes denoted by significant SNPs in leaves suggested they may be involved in biosynthesis of the leaf inclusions. These genetic loci provide with invaluable information for further studies on the gene functions in biosynthesis of the leaf inclusions and selective breeding of the plus trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.